
Two Simple Proofs for Cramer's Rule
作者:
Frank the Bunny
最近上传:
9 年前
许可:
Creative Commons CC BY 4.0
摘要:
Cramer's rule is usually explained by cofactor expansion of determinant. This note explains two alternative and simple proofs.

Cramer's rule is usually explained by cofactor expansion of determinant. This note explains two alternative and simple proofs.
\documentclass{article}
\usepackage{fullpage}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
% bold face letters for matrix
\newcommand{\Abf}{\ensuremath{\bm A}}
\newcommand{\Ibf}{\ensuremath{\bm I}}
\newcommand{\Mbf}{\ensuremath{\bm M}}
\newcommand{\Nbf}{\ensuremath{\bm N}}
% bold face letters for vector
\newcommand{\bbf}{\ensuremath{\bm b}}
\newcommand{\ebf}{\ensuremath{\bm e}}
\newcommand{\xbf}{\ensuremath{\bm x}}
\newcommand{\ybf}{\ensuremath{\bm y}}
% order: \order[st]{1}, \order{k}
\newcommand{\order}[2][th]{\ensuremath{{#2}^{\text{#1}}}}
% Matrix transpose
\newcommand{\trans}[1]{\ensuremath{{#1}^\intercal}}
% Matrix inverse \inv[2]{\Abf} or \inv{\Abf}
\newcommand{\inv}[2][1]{\ensuremath{{#2}^{\text{-}{#1}}}}
\begin{document}
\title{Two Simple Proofs for Cramer's Rule}
\author{Frank the Giant Bunny}
\maketitle
\thispagestyle{empty}
Given a non-singular linear system $\Abf\xbf = \bbf$,
\emph{Cramer's rule} states
$x_k = \frac{\det\Abf_k}{\det\Abf}$
where $\Abf_k$ is obtained from $\Abf$ by replacing the
$\order{k}$ column $\Abf_{\ast k}$ by $\bbf$; that is,
\begin{equation}
\Abf_k
=
\begin{bmatrix}
\Abf_{\ast 1}, \cdots ,\Abf_{\ast k-1},
\bbf, \Abf_{\ast k+1}, \cdots, \Abf_{\ast n}
\end{bmatrix}
=
\Abf + (\bbf - \Abf_{\ast k})\trans{\ebf}_k
\label{eq:rank-one}
\end{equation}
where $\ebf_k$ is the $\order{k}$ unit vector.
The proof for Cramer's rule usually begins with writing down
the cofactor expansion of $\det\Abf$. This note explains two
alternative and simple approaches.
As explained in the page 476 of Meyer's textbook\footnote{
Carl D. Meyer, \emph{Matrix Analysis and Applied Linear Algebra},
SIAM, 2001.
},
one can exploit the rank-one update form in \eqref{eq:rank-one}.
The \emph{Matrix Determinant Lemma} states that
\begin{equation*}
\det(\Abf + \xbf\trans{\ybf})
=
(1 + \trans{\ybf}\inv{\Abf}\xbf) \det\Abf
\end{equation*}
where $\Abf$ is an $n\times n$ non-singular matrix and
two vectors $\xbf,\ybf$ are $n\times 1$ column vectors.
Then
\begin{alignat*}{2}
\det\Abf_k
&=
\det\big(\Abf + (\bbf - \Abf_{\ast k})\trans{\ebf}_k\big)
&
\quad\text{by definition of $\Abf_k$}
\\
&=
\big\{
1 + \trans{\ebf}_k\inv{\Abf}(\bbf-\Abf_{\ast k})
\big\}
\det\Abf
&
\quad\quad\text{by Matrix Determinant Lemma}
\\
&=
\big\{
1 + \trans{\ebf}_k(\xbf - \ebf_k)
\big\}
\det\Abf
&
\text{$\Abf\xbf = \bbf$ and $\Abf\ebf_k = \Abf_{\ast k}$}
\\
&=
\big\{
1 + (x_k - 1)
\big\}
\det\Abf
&
\text{$\trans{\ebf}_k\xbf = x_k$ and $\trans{\ebf}_k\ebf_k=1$}
\\
&=
x_k\det\Abf
&
\text{by canceling out}
\end{alignat*}
which completes the proof.
Another simple proof due to Stephen M. Robinson\footnote{
Stephen M. Robinson,
``A Short Proof of Cramer's Rule'',
\emph{Mathematics Magazine}, 43(2), 94--95, 1970.
} begins by viewing
$x_k$ as a determinant
\begin{equation*}
x_k = \det\Ibf_k =
\det
\begin{bmatrix}
\ebf_1 \cdots ,\ebf_{k-1},
\xbf, \ebf_{k+1}, \cdots, \ebf_{n}
\end{bmatrix}
\end{equation*}
where $\Ibf_k$ is obtained from the identity matrix $\Ibf$ by
replacing the $\order{k}$ column by $\xbf$.
Then $\Abf\Ibf_k$ directly yields the matrix $\Abf_k$ in
\eqref{eq:rank-one} without resort to rank-one update.
\begin{align*}
\Abf\Ibf_k
&=
\Abf
\begin{bmatrix}
\ebf_1 \cdots ,\ebf_{k-1},
\xbf, \ebf_{k+1}, \cdots, \ebf_{n}
\end{bmatrix}
\\
&=
\begin{bmatrix}
\Abf\ebf_1 \cdots ,\Abf\ebf_{k-1},
\Abf\xbf, \Abf\ebf_{k+1}, \cdots, \Abf\ebf_{n}
\end{bmatrix}
\\
&=
\begin{bmatrix}
\Abf_{\ast 1}, \cdots ,\Abf_{\ast k-1},
\bbf, \Abf_{\ast k+1}, \cdots, \Abf_{\ast n}
\end{bmatrix}
\\
&=
\Abf_k
\end{align*}
Then,
\begin{equation*}
x_k
= \det\Ibf_k
= \det\inv{\Abf}\Abf\Ibf_k
= \det\inv{\Abf}\Abf_k
= \det\inv{\Abf}\det\Abf_k
= \frac{\det\Abf_k}{\det\Abf}
\end{equation*}
which exploits the fact that $\det\inv{\Mbf} = 1/\det\Mbf$
and $\det\Mbf\Nbf = \det\Mbf\det\Nbf$ for two square matrices
$\Mbf$ and $\Nbf$ of the same size.
\end{document}